Chapter 3: Game Changers

There has never been a more exciting time to contemplate a bold future in space driven by a massive American-led effort to win the high frontier for all of humanity.

That may seem a ludicrous proposition given the thesis of the previous section which is that Americans are ambivalent about funding space exploration, have been since Apollo, and any proposal for a more expansive space program must overcome a daunting list of core challenges and an increasingly volatile political context.

Given its importance, the extent of the political challenge is worth recapping.  As of 2022, we have faced in just the last few years multiple, major crises including a global pandemic, an economic collapse rivaling the Great Recession, a massive protest movement for racial justice, and a Russian war of aggression on the European continent.  All of these crises will require significant funding to resolve and that will shape the ability to spend in the future.

The forecasts of our long-term fiscal situation are now grim.  Our national debt is enormous, nearly 100% of GDP by the end of 2022, and forecasted to get worse over the next 10 years and much worse over the next 30.  More broadly, our middle class is under threat and now our economy is facing the first serious attack of inflation in 40 years, requiring the Federal Reserve to pivot from expansive to restrictive economic policies, likely resulting in a recession in the near-term.   Inflation destroys real value, hides the larger problem of stagnation, and risks driving income inequality higher than the already historical levels today.

In 2020, every region of the world seemed to be getting more dangerous, requiring more guns over butter.  But in 2022, this fear found expression in Russia’s invasion of Ukraine, a brutal war of conquest that we thought was impossible in the modern era.  It was not.  The war has upended security and diplomacy assumptions across Europe and the world, created massive economic disruptions to supplies of energy and food, and will lead to profound economic and military adjustments that will play out for decades.   China is even more concerning now.  As China rises and its leader anoints himself a dictator for life, a new era of Great Power rivalry has begun whether we like it or not.  Major increases in defense spending are in the offing to rebuild European security and defend Taiwan from invasion.

Meanwhile, we face a warming planet that is already imposing significant costs in the form of heat waves, massive flooding, forest fires, and multi-year droughts.   A major effort will be required to save the future from even worse outcomes.  These issues are occurring against the backdrop of a polarized and seemingly poisonous partisan political environment.  We are an almost exactly equally divided nation on every issue that seems unable to reach consensus on anything, choosing conflict, anger, and insult instead.

The list of calls on our resources both now and in the future is long, urgent, and morally compelling, a list in which high-minded aspiration is easily trumped by practical necessity.

And yet, for all that, the game is changing and this is an exciting time to consider our future in space.

Two fundamental game changers have appeared on the playing field that may rewrite the assumptions about what is possible when we think about our future in space over the next several decades along with the balance between the public and private sectors.

It comes down to rockets and rocks.

We’ll discuss both and then we’ll talk about what I mean by the game of getting to scale in space and why what I will pitch is bolder in scope and timeline than anything Elon Musk or Jeff Bezos has considered or proposed.


As argued earlier, getting into space is expensive and always has been.  Yet, new rockets with new capabilities have emerged to fundamentally rewrite the rules of the possible.  Elon Musk’s company, SpaceX, has created the world’s first reusable production rocket.  The Falcon 9 and the Falcon Heavy make SpaceX the most powerful space launch company on the planet.  Trailing, but working to catch up, is Jeff Bezos’ company, Blue Origin, with its current New Shephard and planned New Glenn rockets still in development and not yet fully operational, but with similar potential for reusable flight as SpaceX.   Last, NASA is inching closer to completing the Space Launch System (SLS) heavy lift rocket.  These are all significant developments.

To understand why these developments are important, you need to start with the historical record of what it costs to launch material into space.  In Table 3.1 below, an illustrative cost curve shows the actual historical cost of launching a kilogram into space to Low Earth Orbit compared to the original premise and forecast made for the Space Shuttle.

The Shuttle was supposed to give us the dashed line that was going to bring launch costs to Low Earth Orbit down under $250 per kilogram by the 1980s.  In the 1970s, with the Shuttle under development and optimism high for a breakthrough reduction in launch costs, big dreams were considered and discussed.  As we know now, none of it happened.  With the Shuttle, costs remained in the range of more than $20,000/kg and so the budget realities of doing anything at scale were simply too expensive to contemplate.   The momentum for and dreams about a big future in space that had blossomed in the 1970s slowly faded from mainstream sight.

The arrival of innovative new firms (SpaceX, etc.) on the scene in the last decade are now bringing launch costs down dramatically and account for the steep decline which is illustrated in Table 3.1.

While Table 3.1 is illustrative (e.g. not exact), the key point here is that actual costs are beginning to converge with the original premise of the 1970s.  Ideas once seriously discussed and considered in the 1970s – when the Shuttle was theoretically going to deliver reduced launch costs and then seemed outlandish for decades because those costs remained so high – may no longer be quite so crazy.  It may be possible to put them back on the table for public discussion.

But first, let’s review how and why the Shuttle fell short and what these new innovations are and what they mean for launch costs.

Table 3.1: Expected vs. Actual Launch Cost - 1 KG to LEO (1980 - 2016)

The Shuttle:  Promise & Disappointment

The Space Shuttle was a technological marvel and a source of national pride.  Designed and built in the 1970s and launched in 1981, the fleet of five production shuttles had a 30-year run as the mainstay of America’s space program with a cumulative total of 135 launches.  It was also so complex and expensive that the cost of the Shuttle program crowded out all other human exploration missions beyond Low Earth Orbit and its sheer complexity and its significant design flaws led to the loss of two shuttles (Challenger, Columbia) and their crews.  The Shuttle failed to meet the primary goal of achieving low cost access to space at scale.  This latter point is crucial.

While the Space Shuttle was originally envisioned as being able to reduce the cost of getting to Low Earth Orbit to a few hundred dollars per pound, (Example:  $118/lb. in 1973 dollars or $650-$750/lb. in 2013 terms1), the truth is the vehicle turned out far more complex than envisioned.

The Shuttle was so complicated it required a massive and time-consuming effort to prepare it for re-launch.  It required thousands of hours to refurbish both the shuttle and its booster engines in between each flight, an effort done by a small army of engineers and technicians.  The workforce supporting the Shuttle program was nearly 25,000 strong, making the labor bill very expensive.  The main engines had to be completely removed, disassembled, and refurbished.  Its 35,000 individual heat shield tiles had to be each manually inspected to confirm they were undamaged and remained in place.  The fastest turnaround time from landing to re-launch given this near total refurbishment was reportedly two months.  In addition, the shuttle fleet never achieved the operational tempo necessary to drive down costs with volume.  Instead of a launch every few weeks, the quickest tempo reached just nine launches in a single year (for a fleet of less than six Shuttles) and more often was much less throughout the life of the program.  This meant that the standing cost of the infrastructure and workforce could not be amortized through greater volume and frequency of launches.

Given these challenges, the cost of each flight was estimated by NASA as $450 million, implying a cost per lb. to Low Earth Orbit of roughly $8,000 ($18,000/kg).  Yet, when all of the development and support costs are added in, the cost per flight as calculated by a number of third parties estimates each launch was closer to $1.5 billion, or $27,000/lb to LEO ($60,000/kg).

The Space Shuttle was only technically re-usable.  It flunked the real test with dramatic consequences for cost.  The real test of reusability is often described as more akin to a 737.  Can you fly it, land it, and take off again with a very short turnaround window.  Think Southwest Airlines.  But if you had to take apart a 737 plane after each flight, inspect and polish every part, and reassemble it, we would have today precisely five of them flying around the United States with flights only every few months and not the hundreds of aircraft completing several thousand flights a day, moving millions a year (at least during a non-pandemic ‘normal’ year).

Gaining access to space has faced this fundamental conundrum when it comes to cost.  Before SpaceX, we either discarded the rocket completely or we had to rebuild it from scratch.

The 737 analogy (e.g. that launching into space is expensive because we effectively have to build a 737 and then throw it away after each flight) is only partly accurate.  A better description would point out that most of what that notional 737 carries would be fuel with passengers and cargo limited to just what you can stuff into the pilot’s cabin.

Getting into space used to be enormously expensive with very little chance of getting to scale.  That is why the accomplishments of the last few years have been so important and the potential milestones on the near-term horizon may well be revolutionary.

We’ll start with SpaceX which has generated enormous enthusiasm and hype for its rapid progress and incredible vision and Blue Origin which was the first to hit the milestone of landing a rocket back on the ground after reaching space.


SpaceX, founded by Elon Musk, has combined bold vision with innovative engineering since it was founded in 2002.  Initially supported by NASA re-supply contracts for the International Space Station, the company has steadily innovated and made enormous strides in a very short time to become the world’s leading space launch company with a major share of the global launch market.

Prior to 2015, SpaceX already offered the lowest cost access by a production rocket to space of any company in the world.  Their list price for a Falcon 9 rocket was $62M and in 2015, it could deliver a pound of cargo to Low Earth Orbit for $2,110.  This was an order of magnitude cheaper than the Shuttle yet SpaceX was just getting started.  They also had a heavy lift launch vehicle on the drawing board, the Falcon Heavy, that would have three first stage rockets bundled together which was envisioned to lift nearly 60 tons to Low Earth Orbit at a cost of below $800/lb.  Many in the aerospace industry suggested the Falcon Heavy wouldn’t work, was too complicated, or would take longer and be more expensive than planned.

But the differentiation that made SpaceX successful was its relentless focus on reusability.   As it developed the Falcon 9, SpaceX focused on reusability from the start.  They attacked the problem iteratively with each launch, first making the rockets themselves reliable, then adding extendable legs so that they could attempt to safely land a launcher after each flight.

At first progress was slow and launch after launch finished with a rocket falling in the ocean or collapsing and exploding on one of its floating recovery drone ships.  But the company learned with each failure and continued to improve.

Then, on December 22, 2015, a SpaceX Falcon 9 launched from Cape Canaveral with a payload bound for space.  At an altitude of 124 miles, the first stage of the rocket separated from its cargo, executed a series of maneuvers to turn around, and then returned to Earth – and successfully landed back at its launching pad in Cape Canaveral.   This was the first time a production rocket had returned and landed itself and it marked an historic milestone.   Science fiction had become science fact.

SpaceX then began to regularly recover its first stage launchers in a variety of conditions including at Cape Canaveral and on its ocean-going drone landing ships, Just Read the Instructions and Of Course I Still Love You.  As SpaceX made returning the first stage launchers routine, it was also working on learning how to refurbish and re-fly them.

In March, 2017, SpaceX re-used a launcher on a second mission successfully and it has continued to reuse launchers and get better over time.

Meanwhile, the Falcon Heavy was under development and made its maiden test launch from Florida in February, 2018, launching a test cargo of a Tesla roadster with a dummy astronaut in the driver’s seat.

By the end of 2020, SpaceX had completed over 100 production flights with its Falcon rockets (Falcon 9 and Falcon Heavy) of which 60+ first stage launchers have been recovered and 45 boosters have been successfully re-flown into space.  In 2020, two launchers completed their sixth roundtrip into space, an extraordinary record in just five years from the first successful landing of a launch stage.2

To cap it all off, in May, 2020, SpaceX lofted two astronauts to the International Space Station, marking the return of American astronauts flying on an American rocket for the first time since 2011.   NASA formally certified SpaceX to carry astronauts in November, 2020, ahead of its second mission, ending America’s reliance on Russia to carry American astronauts into space.

As SpaceX continues traveling up the learning curve, they have continued to chip away at the cost of lifting cargo into space.  In 2020, the Falcon 9 could lift a little over 25 tons (50,265 lbs) to Low Earth Orbit (LEO) for a list price of $62 million which works out to $1,233/lb.  The cost to a higher orbit (Geosynchronous Transfer Orbit, or GTO) is $3,400/lb.   The Falcon Heavy offers even better economics.  It can lift 70 tons to LEO at a cost, based on a list price of $90M, of just under $640/lb.   To the higher GTO orbit, it can lift just shy of 30 tons at a cost of just over $1,500/lb.3

What these numbers mean is that the cost of lifting cargo into space has come down dramatically from the Space Shuttle days and it may go lower still.

Just how low costs can go will depend on how successful SpaceX is at reducing turnaround time and continuing to get reuse out of its launchers and all other components.  Some commentators have speculated that SpaceX could yet drive down costs by another 50% over current list.  After all, these same commentators continually point out that the Falcon 9 rocket costs $60 million to build, but only $200,000 to fuel.

An independent analysis published on a Czech fan site of all things Elon Musk has a speculative but well researched analysis of current Falcon 9 launch costs based on reusability.   Citing tweets from Mr. Musk that the marginal cost of relaunching a Falcon 9 was just $15 million, the author (SCR00CHY) calculated the estimated cost of 10 Falcon 9 launches as $209 million.  There are some big assumptions built into the analysis (fairing reusability, ten launches, etc.), but they are grounded in information that Musk, himself, has shared.  If these numbers are anything close to real, it implies that the cost to lift 10 flights of cargo on a Falcon 9 to LEO, or 25 tons per flight, 250 tons in total, could be potentially delivered for just under $420/lb.  While the source may not be an academic journal, it’s a well thought out analysis and provides a directional view of what might actually be happening.  Kudos to SCR00CHY for putting in the work.4

Now ask yourself, what if the Falcon Heavy has similar economics?  They won’t be the same because the Falcon Heavy uses three launch engines instead of one.  If we assume reusability is able to cut the cost of the Falcon Heavy by 50% on the list price (to $45M), then 10 flights at 70 tons per flight (700 tons total) could theoretically be delivered for around $320/lb to LEO.

As a reference point, the International Space Station is less than 500 tons.  It took 10 years and 30 flights to assemble.   At $450 million a flight at Shuttle prices in the 90s and early 2000s, that’s a cost of nearly $15 billion just for the launches.  It’s stunning to realize that 10 flights of a Falcon Heavy can potentially be done for the cost of one of the original crewed Shuttle missions, but that is where we are at today.

These are revolutionary numbers but that’s not where it stops.   There are even more indications that costs could go lower still.

First, SpaceX is developing the Starship, a Super Heavy rocket able to lift 100 tons into space and be fully reusable.  This greater reusability and still larger lift capacity could continue driving down costs further.

Second, SpaceX has applied for the permits to run much greater launch volumes in the next several years, an estimated 70 launches per year (vs. at most 15 in the recent past).  This greater launch tempo will greatly help the economics of reusability and continue to drive down costs.5

The inescapable conclusion is that SpaceX is delivering a revolutionary breakthrough in access to space and increasingly making it seem routine.

Meanwhile, SpaceX is not the only private launch company working to compete in this market.

Blue Origin

Blue Origin is a company owned by Amazon founder Jeff Bezos and is another private sector contender to create a fully re-usable Vertical Takeoff, Vertical Landing (VTVL) vehicle.

Its current rocket, the New Shephard, is designed to carry six tourists into space to experience weightlessness and a view of Earth through large windows.

Both the capsule and the booster rocket are intended to return safely to be re-used for future flights.

The firm was notorious for being secretive about its progress, but suddenly on November 24, 2015, Blue Origin achieved a major milestone by launching a New Shephard rocket to an altitude of 307,000 feet (at the Kamen Line which defines the very edge of space) – and returning it.  The booster rocket returned to land back at the launching pad, settling gracefully down onto its four extendable legs at a speed of less than 5 mph.

In effect, Blue Origin ‘scooped’ the prize for achieving the world’s first reusable launcher returned from space out from underneath SpaceX’s nose.  However, the comparison was not entirely fair given the New Shepard carried no cargo, was not a full production rocket, and just touched the edge of space.

Nevertheless, it was a powerful demonstration.

Blue Origin went on to launch and return the same rocket multiple times, demonstrating that they, too, had a candidate for a reusable rocket.

Currently Blue Origin is working to scale up on two tracks.   First, they are producing a rocket engine, the BE-4, that will be used not only in future Blue Origin rockets, but will also be purchased and used in a new rocket by United Launch Alliance, the Vulcan launch vehicle.

The second track is building up a massive new rocket designated the New Glenn.  The plan is for a launch vehicle that is nearly 100 meters high, nearly as tall as the old Saturn V rockets from Apollo.   These vehicles will have a 7-meter diameter and be able to lift 45 metric tons to Low Earth Orbit and 13 metrics tons to the higher Geosynchronous Transfer Orbit (GTO).  After several delays, Blue Origin is currently schedule to launch New Glenn for the first time at the end of 2022.

While industry sources note that important progress has been made on the BE-4 engines and building out manufacturing facilities for the large New Glenn, there has as yet been no test flights of a full rocket and there is speculation that the first launch may slip beyond 2022.6

It’s never unwise to write-off one of the most successful entrepreneurs in the world, Jeff Bezos, so Blue Origin will be a company to watch in the coming years to see if they can catch up with SpaceX and deliver a heavy lift launch vehicle.

The Old Guard

The idea of a reusable production rocket that is capable of multiple launches into space is no longer a novelty or merely just theoretical.  SpaceX has proven it works with production launchers and the cost advantage has given them a large share of the global launch market already.  Blue Origin is trailing, but intent on catching up with the New Glenn in the next few years.

The bigger mystery is what the large, established aerospace and defense firms in America are doing.  United Launch Alliance is building a new Vulcan launch vehicle.  But it will be only partially reusable at best.  The company is looking at trying to recover the engines post-launch, not by having them land on their own, but by snatching them from the air with a helicopter as they parachute back to Earth.

Northrup Grumman is building the Omega rocket to compete for defense contracts, but, again, it is not reusable.  Boeing is the prime contractor for NASA’s Space Launch System – which is also not reusable.   At least one smaller company, Rocket Labs, is working on a reusable rocket for the small launcher segment.

The traditional launch industry in America is being rapidly displaced by SpaceX, but seems to be ceding the market in favor of retaining specific niches in areas like national security launches or cost plus contracting for NASA where cost is less of an issue.  In fact, some of the traditional vendors are even skeptical about whether reusability has a business case.

This could be incredibly short sighted.  If you believe there is a tiny, modest market for space launches in the coming decades and you cannot compete on cost with SpaceX, then the smart play is to target a niche.  You go for a smaller segment that is higher cost, but requires higher quality.  But that only makes sense if the future market size is small and if the competition can’t also demonstrate its own high quality and then displace you from your niche with lower cost.  However, if the market scales greatly, the traditional aerospace companies will have handed over the future to more entrepreneurial upstarts.

These questions are a puzzle.  Here’s another.  Choosing not to innovate and invest in a competing reusable rocket is not for a lack of money or resources.  Just three of those US-based aerospace and defense firms spent $50 billion dollars in dividends and share buybacks between them in just one five-year period from 2010-2015.  In effect, the big firms appear to be choosing to return money to their shareholders rather than invest in R&D and build new products for the future.

If we have entered a new Space Race to achieve reusability, history will look back and wonder why the big established firms abdicated the future without a response, why they gave back money instead of investing it in a new frontier.   The historians may draw analogies with Apple’s rise to market dominance with the iPhone, completely marginalizing the market leaders of their time – Nokia, Blackberry, and Motorola.  They may mine the internet for the statements and CEO letters that called reusability impractical and compare them to the infamous Steve Balmer rant that the iPhone was impractical when it debuted because it didn’t have a physical keyboard.  We know how that turned out.

It does not have to be this way.   In auto manufacturing, Tesla has been the dominant electric car company for more than a decade.  Tesla has paved the way.  But the majors are no longer standing still.  From General Motors to Ford, Volkswagen to Toyota, the big established players are making big bets on electric cars and working hard to invest in the future.   Tesla proved the market.  The others are now racing to catch up with dozens of new electric cars launching in the next few years.  General Motors has now committed to going all electric by 2035.   These are enormous changes.  The big automakers are not ceding the market to Tesla now that it is obvious where future growth will be.

If you believe the future market for launch services is much, much bigger as costs come down, then failing to invest in that future looks short-sighted.  It is also a loss for America.  We need a vibrant launch market with vigorous competition to drive innovation and reduce costs.  If there is good news, perhaps it is that it is never too late to catch up, especially if that future market is massive and runs for many decades.  History will not be kind in its judgement of American aerospace leadership if they simply cede the market in favor of short-term stock options.


Concurrently, NASA’s Space Launch System (SLS) rocket is nearing its planned launch in September/October, 2022.  It has been a slower, more torturous process metered by budgetary constraints and a trickle of funding complicated by changing designs and dueling directions from Congress and successive Administrations.   The rocket was supposed to be ready in 2016.  It is more than five years overdue.

The SLS in its initial configuration will be capable of launching payloads of 70 tons into orbit and can scale in later versions up to 130 tons.  The cost is enormous and criticism has dogged the SLS for years.

An analysis by John Strickland, writing in in 2013, estimated that the true cost of the SLS assuming one launch per year could be as high as $5 billion per launch when you include the Orion capsule, the SLS launch rocket, the cost of operating the supporting workforce for a year, and a share of the amortized development cost.  However, Strickland also pointed out that recent news has suggested that the rocket might only be used once every four years and, if that is true, the cost per launch including all of the development costs and the cost of the standing workforce would mean each rocket launch would be closer to a $14 billion price tag, making it a phenomenally expensive rocket to say the least.7

That $14 billion price tag seems wildly unrealistic, but according to NASA’s own Inspector General, the SLS will have spent $18.3 billion by the time it launches in spring 2021.  If, as is widely expected, the first Artemis mission to the moon is delayed to 2023, then the total cost will have reached $22.8 billion.  The cost to build the SLS is running close to $2 billion per year.8

In December, 2019, the NASA Director, Jim Bridenstine, said the cost of launching the SLS would be $900 million per launch, but this assumes some kind of volume with these launches.9

Numbers like these put the Space Launch System’s future in grave doubt.   As Boeing and its subcontractors continue to generate cost overruns and delays, SpaceX has steadily developed its Falcon series rockets that can deliver large cargoes to space at much lower costs.   If cost is the only issue, SpaceX is a better deal.

However, there are several arguments for keeping the SLS for deep space missions and for larger size missions.   Both are important.

The case for deep space rests on reliability and quality, a niche market for lifting astronauts in a large capsule (Orion, built by Lockheed Martin) that is meant for long duration missions to the Moon, asteroids, and even Mars.  These longer missions require a bigger crew capsule which requires a larger rocket.  The Orion capsule can carry four astronauts, weighs nearly 40 tons, and has over 300 cubic feet of living space.   The overall SLS system is designed to fit these requirements.

The SLS can not only lift a large payload for deep space, but that payload can be as much as 10 meters (nearly 33 feet) in diameter which means the rocket can lift very large modules.

As a point of comparison, the International Space Station is a structure that is the size of a football field, composed of multiple modules weighing in at a total of roughly 925,000 lbs, or less than 500 tons.  It took over ten years to assemble via more than 30 Space Shuttle flights (and a handful of Russian launches).  In its largest variant, the SLS could effectively do the job in just four launches.

Nor are the SLS and SpaceX’s Falcon rockets necessarily direct competitors in the same way that a 737 does not compete with a 787 which does not compete with an Airbus 380.  They have different purposes for different market segments.  There are just over 250 Airbus 380s compared to nearly 1,000 Boeing 787 aircraft as of the end of 2020.  Prior to Covid, there were thousands of 737 flights every day.  Each of these three aircraft has different niche markets they serve.

That said, it is worth pointing out that the Airbus 380 has become an albatross for Airbus.  The 380 was designed to move large numbers of passengers between major airports in a hub-and-spoke type system.  However, the airline market moved to a point-to-point system that Boeing anticipated better with its 787 Dreamliner.   As a result, Airbus is closing production of its 380 in 2021 after just 251 aircraft and will have failed to recoup any of its $25 billion in development costs.

A similar fate could befall the SLS if it proves to be a rocket that was designed for a different era and is outmatched by a new competitor with a different vision.   It will be very hard to continue funding the SLS if SpaceX is able to create its next generation Starship rocket which will be nearly as big (9-meter diameter) as the SLS and also be fully reusable and able to lift cargo at a small percentage of the cost (10% or less of the cost per flight of the SLS).

Nevertheless, the maiden flight of the SLS on a mission to circle the moon is now planned for the end of September or early October, 2022.


NASA’s SLS is a system trying to outrun a rapidly changing market for its service.   SpaceX and Blue Origin are energetic firms in search of a larger market even as some of the traditional aerospace firms continue to doubt the business case for re-usability.

What’s clear is that a new era has started, a new space race to achieve reusability at scale and volume that would deliver a dramatic decrease in costs.  At the end of the day, SpaceX and/or Blue Origin are likely to capture the lion share of launches with their lower cost.  We still may need the SLS, but its future is beginning to get murky.


In 1996, John Lewis, a professor at the University of Arizona, authored a book, Mining the Sky, describing the enormous wealth of resources that resides in our solar system in the form of asteroids.   Lewis wasn’t the first to consider this possibility (Konstantin Tsiolkovsky proposed mining the resources of space as early as 1903), but Lewis provided a compelling vision and backed it with details.  He posited the potential to mine these resources and outlined the processes for extracting the resources in them.  It makes for interesting reading, but while it suggested potentially vast sums that could be gained in space, it seemed very much on the far horizon of our future and well out of reach.

Then something changed.

In April 2012, a study group of nearly three dozen experts led by John Brophy, Fred Culick, and Louis Freedman and funded by the Keck Institute for Space Studies (KISS) issued a report with the relatively dry title of Asteroid Retrieval Feasibility Study.  What they proposed was revolutionary.  Their study detailed out the mechanics and cost of sending a robotic probe to rendezvous with a small asteroid, capture or ensnare it, de-spin it, and then transport it back to a point closer to earth where it could be studied by astronauts.

Whether the approach catalyzed a lot activity or the idea of asteroid mining was already in the air, a lot of announcements soon followed.

On the NASA front, the Keck approach quickly became a candidate for fulfilling President Obama’s goal of sending astronauts to rendezvous with an asteroid.  After all, if we can get the asteroid a lot closer, then the mission of visiting with astronauts is also a lot easier.  The paper inspired the proposal of a formal mission by NASA called the Asteroid Redirect Mission (ARM) that was intended to capture and return an asteroid to near Earth.

Within a few weeks after the study was issued, there were several private sector announcements about mining asteroids that followed in rapid sequence.  Two companies caught the most press.  They were Planetary Resources and Deep Space Industries.  Both were publicly launched with much fanfare shortly after the Keck study was issued.

Planetary Resources was co-founded by Eric Anderson, founder of Space Adventures, and Peter Diamandis of X Prize Foundation fame.  The group was backed by some of the most successful entrepreneurs in the world including Larry Page and Eric Schmidt of Google, Richard Branson of Virgin, and James Cameron of Titanic and Avatar movie fame.  Planetary Resources pursued an approach that involved launching small satellites called Arkyds.  The first of them, the Arkyd 100, would essentially be a small telescope used to find more asteroid candidates.  That would be followed by the Arkyd 300 series that would be sent out in small groups to rendezvous with an asteroid and survey its size and composition.

Planetary Resources attempted to leverage a crowdfunding approach to finance its first small satellite.  In June 2013, it launched a Kickstarter campaign that raised over $1.5 million from 17,500 donors in less than 33 days.  Backers received a space ‘selfie’ and a T-shirt for their efforts to create the ‘world’s first privately owned space telescope.’

Deep Space Industries, for its part, was also active and took a similar approach to exploring first, mining second.  Its satellites were called Fireflies and Dragonflies.  Deep Space Industries’ plan was to start by sending out relatively inexpensive Fireflies on one-way missions to survey Near-Earth Asteroids followed by a Dragonfly to survey and return a sample back to Earth.  Once a suitable target asteroid was identified, a ‘harvester’ would be sent out to pull the candidate asteroid back to a location closer to Earth for mining and processing.

The Keck study appeared to serve as a catalyst for both a NASA mission and two companies that generated a lot of buzz and excitement in the press.

Why the excitement?

It comes down to money.  A lot of money.

In February, 2013, a 150-foot wide Near-Earth Asteroid, 2012 DA14, came within 17,200 miles of Earth and inspired a huge amount of speculation on what it was worth.  Deep Space Industries publicly suggested it had a value of nearly $200 billion in materials, estimating that the asteroid held $65 billion worth of recoverable water and $130 billion worth of valuable metals.

Scientists and economists disputed the composition and the calculation, but the incident served to illustrate that there was a potentially vast amounts of resources in asteroids that may be recoverable.  To understand the potential, a basic primer on asteroids is worth reviewing.

A good deal is known about asteroids from samples of meteorites that have fallen from Earth and from surveys of their spectral reflections which tells a lot about their composition.  This allows some educated guesswork, although it is still guesswork.  The truth is no one knows exactly what any one asteroid contains or is worth until someone begins mining them.  What we do know is very intriguing.

We know there are millions of asteroids out there in the main asteroid belt between Mars and Saturn.  We also know that there are a large number of what are termed Near Earth Asteroids that are closer or have an orbit that comes close to Earth and may make them easier to access, capture, or mine.  There is a good bit of scientific speculation that the bulk of Earth’s water originally came from asteroids.

There are three main types of asteroids.

  • C-Type Asteroids are called Carbonaceous Asteroids. They make up an estimated 70% of asteroids and are composed of water, clay, and organic materials.  The water content is believed to be in the range of 10-20% for any given asteroid and 6% is made of organic material according to recent surveys.  These asteroids don’t have a lot of metals, but water is important.  The hydrogen and oxygen contained in an asteroid’s suspended water content can also be used to create rocket fuel.
  • S-Type Asteroids. The S-type asteroids make up an estimated 17% of asteroids and are considered ‘stony.’  They are comprised of silicates (chondrites) that contain 30-100% oxidized iron and achondrites which are made up of silicates and oxides.  These asteroids can be mined for oxygen, oxides, and metals.  The metals likely include valuable commodities such as gold, platinum and rare earth metals such as rhodium.  It’s been speculated that a 10-meter sized S-type asteroid contains as much as 110 lb. of rare metals like gold and platinum.
  • M-Type asteroids are much rarer but contain a lot more metal content.

What can be made from an asteroid’s materials?  The short answer is a lot.  The products that can be produced from these asteroids are endless, but the basic ones are critical.  They are:  Fuel, water, oxygen, and metals.  The organic compounds found in asteroids can also be used to create fertilizers and industrial chemicals, the basic building blocks of most supply chains and production processes.  Water, for instance is critically important.  It can be used to make fuel, which effectively establishes a space-based transportation system.  Water also supports life and allows for crews in space to operate with fewer supplies (e.g. water, food, etc.) lifted at enormous cost from Earth.

In short, asteroids may hold the key to creating an economic rate of return in space and reducing the cost of operating in space by orders of magnitude.   The current cost of lifting a kilogram of material, any material, to a point in space such as Earth-Moon Lagrange 1 is in the range of $100,000.  That makes doing virtually anything in space exorbitantly expensive.  If, however, we can utilize raw material in space from asteroids, then it potentially makes doing everything in space much cheaper.

(Note:  Lagrange 1 is a location between the Moon and the Earth in which gravity cancels out and where it is theoretically possible to build large structures without using costly fuel to maintain their position.  It is used throughout this book as literary tool to illustrate a possible destination in near earth space where future activity may occur, but it does not attempt to suggest that this is the final or best location for such activity.)

In addition to the 2012 DA14 flyby and the media speculation in 2013 of what it was worth, there are more estimates of the value of metals and resources in asteroids.  These numbers get quite large.  According to Asterank, which billed itself as a scientific and economic database of over 600,000 asteroids (and was acquired by Planetary Resources in 2013), here are some examples:

  • Asteroid 1991 DB is a C-type asteroid that is .6 km in diameter and is estimated to contain recoverable quantities of nickel, iron, cobalt, water, nitrogen, hydrogen and ammonia. Asterank calculates the value of this asteroid as $168 billion, with a potential profit of $26.6 billion.
  • Asteroid Nereus is an Xe type asteroid that is .33 km in diameter and is estimated to contain recoverable quantities of nickel, iron, and cobalt. Asterank calculates the value of this asteroid as $4.7 billion with potential profit of $1.4 billion.
  • Asteroid Anteros is an L type asteroid that is 2.3 km in diameter.  It is believed to contain magnesium silicate, alumninum, and iron silicate.  Asterank calculates the value of this asteroid as an astonishing $5.57 Trillion, with a potential profit margin of $1.25 Trillion.10

Given that no asteroid has actually been recovered and its composition verified, some of these estimates might be more illustrative than perfect.  But with numbers like these being bandied about, it should be clear why there is some buzz in the air among the private space community about the potential for asteroid mining.

On the other side of the hype, however, there have been several attempts to dispute the value being placed on asteroids and their recoverable material.

When 2012 DA14 did its flyby, economists pointed out that the value of resources in the asteroid were potentially wildly optimistic.  You can’t recover those resources by magic.  You have to have an infrastructure in place to process what is effectively a big rock into the elements that are valuable, whether water, gold, or anything else.  That infrastructure is enormously expensive.  It would have to be lifted from the Earth’s surface and would likely cost a $100 billion or more according to some sources.

After all, it’s not like you can just land those asteroids on Earth to recover the materials they contain – that’s an approach that didn’t turn out so well for the dinosaurs.


Rockets and Rocks.  New tools and new opportunities are coming to bear that might change the game of getting to scale in space.  Yet to understand the size of the challenge, it is important to know what I mean by scale in space.  That is where we turn next.  It’s time to talk about what the game really is and why these new developments have the potential to change that game – as well as how much further we have to go.

The Game of Scale

What do I man by scale?  The early NASA plan shared in the previous chapter envisioned several hundred astronauts in space by the early 1990s.  Gerard O’Neil, writing in the 1970s envisioned a future in which thousands of space colonies existed around the solar system and we had a true civilization in space.  Neither of these visions came to fruition and both are beyond reach today and the reason mostly comes down to a matter of cost.  If we want to understand why these visions have not been achieved, we need to understand what they really mean in terms of the cost of getting to scale in space.

Here is a simple exercise to illustrate the size of the problem.  The modest numbers and ambitions associated with space exploration tend to hide the true extent of the cost problem that constrains any attempt to break-out into near earth space at scale.  To understand the issue, start by positing a future presence in space at a notional location like Earth-Moon Lagrange 1 (as noted earlier, this is a location between the Moon and the Earth in which gravity cancels out and where it is theoretically possible to build large structures without using costly fuel to maintain their position.  It is used throughout this book as literary tool to illustrate a possible destination in near earth space where future activity may occur but not to advocate that as the only or best location for such activity).

To then get an illustrative understanding of what it would cost to sustain a group of astronauts or workers at that location, you can break down the cost of transporting and sustaining that astronaut or person into the following constituent parts:

  • Passenger transport to Low Earth Orbit (roundtrip)
  • Passenger transport from LEO to a Lagrange 1 or suitable point (roundtrip)
  • Annual support cost for a person living at a Lagrange point.

This framework is very simplistic and does not account for the cost of building a suitable place for said astronaut to live and work, but as a simple baseline, it can be a useful starting point.  The reason O’Neill’s original vision of self-sustaining colonies at a Lagrange point never materialized can best be illustrated by a cost table for each of these components.  I will attempt to illustrate just two of them – the cost of getting to LEO and the cost of supporting a person living at a Lagrange point.  Both scenarios assume no shortcuts and no living off the land, or utilizing resources other than those brought from Earth.  This is the upper boundary limit on cost, the most extreme example, yet it is a good tool for understanding the cost of getting to scale and where we are today.

Table 1, below, is an estimate of the cost of transporting astronauts to Low Earth Orbit to a station like the International Space Station at various price points and at various levels of scale.  Until 2020, the flight to the ISS was provided by the Russians and it cost over $70 million for each astronaut and covered the roundtrip.  (SpaceX successfully launched astronauts on an American rocket to the ISS in May 2020).  There is widespread belief that SpaceX can bring the cost of transport to LEO down to as low as $20 million per passenger (a number that Elon Musk has promised), although the price may start at something closer to $50 million per passenger.

Such a cost reduction is certainly moving in the right direction.  However, if you attempt to apply these costs at scale, you begin to see just how enormously expensive it would be to move a large number of people into space.

Table 1:  Annual Cost of Travel to Low Earth Orbit

Table 1: Annual Cost of Travel to Low Earth Orbit

Transporting ten astronauts a year to Low Earth Orbit would cost $700 million at the old list price charged by the Russians.  But the cost of transporting 100 astronauts is $7 billion (virtually all of NASA’s current budget for human spaceflight).  If we were to get so ambitious as to consider putting 1,000 astronauts in space at the current list price, the total cost to just get them to the International Space Station would hit $70 billion and then jumps to $700 billion if we attempted another order of magnitude jump to a total of 10,000 per year.  The Russians won’t be carrying our astronauts in the future, so this is the upper boundary for travel cost to LEO.

As noted, SpaceX successfully launched two astronauts to the ISS in 2020 and Elon Musk has promised to get the cost down to $20 million per person.   Yet this is a cost that is still prohibitively expensive to put more than a few dozen astronauts in space.  For example, launching 500 astronauts to LEO at SpaceX’s breakthrough price point of $20 million per person is still going to cost $10 billion.  Going big and launching 10,000 astronauts to LEO at $20 million per person would cost $200 billion, a vast sum, even though it would generate savings of over $500 billion when compared to what the Russians would have charged.

To make advancing humanity into space at anything resembling scale a real possibility, you would need to reduce the cost from the old baseline Russian price of $70 million by a factor greater than 99%.  The cost of transport to LEO probably needs to be in the range of $250k for any kind of scale to be feasible.  At that price, the cost of lifting 10,000 per year is less than $2.5 billion.  Expensive, yes, but given what you would get (10,000 people in space), such numbers would fundamentally alter the dialogue of what is possible and politically and economically feasible.

It is worth pointing out that, while SpaceX has succeeded in launching astronauts to the ISS and the cost is very likely to be closer to the $20 million per person cost, we still need to reduce cost by a massive amount to operate at a price point of $250,000 per person.

Much the same dynamic plays out when you look at what it would take to support a large group of astronauts and workers at that notional Lagrange 1 point on an annual basis.

Table 2 lays out a simplified scenario for what it would cost to support various populations of astronaut at a Lagrange point in space.  It is based on a budget of just over 5kg/day currently needed to support an astronaut at the International Space Station (e.g. the weight of water, food, oxygen, etc).  The Table below assumes all supplies are lifted from the earth’s surface and transported by rocket at an estimated cost of $11,500/kg (an arbitrary estimate). This cost may be much, much lower than what it actually costs today, but it’s a useful starting point for illustration purposes.

The results are both eye-catching and show-stopping.

Table 2 shows that once again the costs of getting to scale in space are enormous if we are using the current tools available.  Supporting just 10 astronauts in space would cost $235 million a year, and this is likely a gross underestimate as noted.  But supporting 1,000 would cost $23.5 billion and supporting 10,000 astronauts at L1 would be an unimaginably expensive cost of $234 billion per annum.  And this cost is just for supporting the astronauts at L1.  It does not include the cost of building a station for them to live on which seems unimaginably more expensive still.

These numbers – using simple baseline assumptions of the cost of supplying all needs from earth-based launches – are probably on the low side, possibly very low side.  But they highlight a fundamental dilemma:  We cannot afford a presence in space at anything approaching any definition of scale with these costs as they currently stand.   We have to dramatically reduce them to get to scale in space.

Table 2: Annual Support Cost – L1 Astronaut Workforce

L1 Workforce - Annual Support Cost

By contrast, Table 3 sketches out a set of illustrative cost reduction scenarios that show the benefit of greatly reducing the cost of supporting an astronaut at a Lagrange point in space.  This illustration, like the ones before, is simplistic and does not presuppose how these reductions are to be made.  If the cost of supplies can be reduced from the baseline estimate by a factor of 99%, then getting to scale in space begins to look more promising.  For example, supporting 10,000 astronauts at a Lagrange point in space would then cost just a few billion, a pittance given the advantage and productive capability such a large workforce in space could potentially bring to bear if it existed.

Table 3:  L1 Support – Cost Reduction Scenarios

L1 Support Cost - Reduction Cost Scenarios

The purpose of these tables and illustrations is not to offer a detailed specification of the costs of launching and sustaining a large scale human presence in space.  Real engineers and economists can do a much better job of that.  The point is to tangibly highlight the obvious – getting to scale in space with current technology and with the current cost structure is virtually impossible for us to afford.

What’s also true is that no serious scenario for building on the space frontier has ever been assumed on the idea that we launch and support a large population in space entirely from Earth.  Any serious plan tries to use resources in space for water, fuel, etc.  The point of these simple models is to show why these strategies are so critical and how challenging the cost issue is without them.

There are great hopes that the private sector may offer a breakthrough in cost on a number of fronts.  Musk’s SpaceX is already bringing down launch costs in large chunks and is billed as a hero for doing so.  Blue Origin may do the same.  There is potential to harness the resources of the asteroids to produce water and materials in space that don’t have to then be lifted from the Earth’s surface (e.g. live off the land in space).

There are enormously creative minds working to solve some of these problems.  But the simple illustrations above highlight the Achilles heel that high cost has been to every vision of advancing humanity into space in anything beyond small numbers.

So where does that leave us today?

Effectively without a plan to leverage a wealth of resources that remains tantalizingly just out of reach and that could re-write what is possible for humanity in space (and in general).  And that brings us to a discussion about the role of the private sector and the public sector, a debate that may be crucial to truly changing the game in space and potentially getting to scale in the future.

The Private Sector Analogy

We are seeing a surge in private sector activity on the space frontier, a few examples of which were highlighted earlier.  The heavy weights getting the most press are companies bringing down launch costs (SpaceX, Blue Origin), proposing colonies on other planets (Mars One), launching micro-satellites at a fraction of the cost of established companies and governments (PlanetApp), or proposing to capture and return asteroids.  Nor is this a comprehensive list.

The future feels like it is being defined by free enterprise.

Meanwhile NASA appears to face a quandary despite the near-term potential for a test flight of the SLS to the moon.  It has built a rocket that uses old technology, is enormously expensive, and it makes every launch high stakes and risky.  The Economist magazine has called it “A flying turkey….yesterday’s rocket using yesterday’s technology and brought about by yesterday’s thinking.”11

Congress is tight-fisted with funding and likely to get more so given the rapidly increasing national debt.  Commission after commission expounds that our goals in space are being underfunded and plead for just a bit more funding, mostly to no avail.

With this as a backdrop, it’s no wonder that a growing chorus is talking up the role of the private sector in leading the space revolution and going where governments have failed to take us.  This refrain goes on to suggest that if only government would get out of the way and let the private sector work its innovative, breakthrough magic, then costs will drop dramatically and we’ll have a big future in space in a remarkably short time.  The conventional wisdom has given up on government leadership or funding at scale.

The analogy that gets brought up in serious works by more serious and credentialed authors is the analogy of the Internet.  As the story goes, the government helped establish the very basic infrastructure and standards in the 1970s and 1980s with pioneering work by DARPA and others to fund the research.

Government then opened up access and allowed the private sector to take the lead, in effect getting out of the way.  At that point, economic activity and growth exploded and one of the most vibrant sectors of our economy emerged spontaneously and at enormous speed, producing thousands of companies including behemoths like Google, eBay, Facebook, and more.   The Internet analogy suggests we are moving in a similar direction when it comes to space.

We should pause at this point to consider the role of analogies.

Analogies matter.  They provide a construct around which to organize support and a language with which to define the direction we wish to go.  They encapsulate and define the strategies we pursue.  We need to think about them carefully.

When people use the Internet analogy in the space context, they are effectively saying that the private sector is the engine of growth and government needs to both enable and get out of the way, allowing the private sector to do what it does best.  If only the government will open up the frontier and allow the private sector and free enterprise to innovate and develop rather than restrain and regulate, we will be able to quickly advance humanity into space.

It sounds great.  There’s just one problem:   It’s wrong.

Innovation on the internet could be done with a two-pizza team volunteering their time in the hopes of a hit that would attract eye balls and funding.  Space is a vastly different proposition with a vastly different investment required.

I’ll offer an alternative analogy for your consideration:   World War II.

In a World War II analogy, SpaceX is to the space frontier what Boeing was to the war effort in the second great war to end all wars, a maker of critically important weapon systems in the form of the B-17 and other aircraft.  Without a huge number of aircraft like the Flying Fortress, America and its allies could not have won the war.  That is clear.  Our nation’s industrial might and ability to scale up and deliver the ships, planes, tanks, and sundry munitions and armaments of all types in the vast quantities needed was critical to the eventual victory.  It was the private sector led by people with names like Knudsen, Kaiser, and Higgins that built that ‘Arsenal of Democracy’.

But looking back at World War II, it would be hard to confuse the role of the private sector and individual industrial companies of the era that produced so many aircraft, ships, tanks, or guns with the overarching role that the government played in mobilizing the public will and resources of America to fight a major conflict.

It was government that mobilized the nation and the economy and funded that effort through taxation and financial controls.  It was government that set up the procurement process, provided contracts to companies, and issued loans to capitalize the factories and the tools necessary to build the arsenal of weapons that would be needed.  It was government that recruited, trained, and fielded the vast armies and deployed the armadas of ships and planes.  It was government that set the strategy and drove the war effort.  It was government that led, fought, and won the war.

When we think of the heroes of that great effort, we think of Roosevelt, Eisenhower, MacArthur, Patton, and others.  We think of the President who rallied us and the generals who led the battles and fought the enemy foot-by-foot, mile-by-mile across Europe and the Pacific.  Many private sector industrialists contributed enormously to the war effort and their efforts were fundamental to the eventual victory and are well known to historians of the era.  (The contemporary example is the war in Ukraine.  Everyone knows who Volodymyr Zelensky is.  Almost nobody knows the name of the CEO whose company makes the artillery rockets that are changing the course of the war.)

Without the private sector producing and innovating, the war effort would have been vastly more difficult, expensive, bloody, or lost outright.  We would not have gotten the best and most efficient weapons in the huge volumes that were critical to winning the war.  You cannot minimize the role of the private sector in creating, innovating, and producing all the weapons and systems needed to defeat our enemies.

But truthfully, the effort was so vast in scope and effort, that it would be absurd to think or suggest even retrospectively that the private sector could have won the war faster if government just got out of the way.  It was government support and funding via government contracts and loans that enabled the production of the arsenal of democracy in the first place.  It was government that fielded the soldiers, sailors, and airmen that used those weapons to fight and win the war.

When it comes to analogies, the space frontier may be more like World War II than the Internet.

Consider this:  The private sector may be better optimized for the shallows of Low Earth Orbit, the lowest price of entry for any kind of significant presence in space.  The cost of doing anything significant in space is so extraordinarily expensive that even there the space entrepreneurs keep finding their way back to NASA’s doorstep in search of contracts that will provide actual revenue.  These contracts range from carrying cargo and now passengers to the ISS to proposals to provide a fuel depot in space.

The cost of access to space is getting cheaper and cheaper courtesy of SpaceX (and soon Blue Origin), but it is still enormous.  It costs hundreds of billions to do anything at real scale.

Unless you are launching satellites, doing anything involving people in space has been so enormously expensive that NASA and government contracting has been a key enabling source of revenue.  SpaceX is changing the cost equation, but the cost dilemma of supporting any sizable activity in space is still an issue.  If tens of billions of dollars in investment could be rallied from venture capital, if the investor community were really ready to throw down and invest massive amounts of capital to seize the high frontier, then why did one of the most hyped companies (Planetary Resources) backed by billionaires with vast fortunes use crowdfunding to finance its first satellite telescope with selfies and T-shirts?  This at a point when a small company was at the peak of hype about its potential.

The cognitive disconnect seems enormous, but it really isn’t.

The truth is simple and understanding this paradigm is fundamental:  Any real riches in space remain highly speculative, extremely risky, and extraordinarily expensive.  Three key words bear repeating.  Speculative.  Risky.  Expensive.

What the billionaires and venture capitalists of Silicon Valley are saying if you read between the lines is that companies like Planetary Resources cannot count on a blank check.  People are willing to back them with their names, and some limited funding, but no one really knows if pay-off will be in five years, 50, or ever.  These companies have to find incremental revenue and define a business model that finances their activity until the day comes when a real return is straight forward, easy, and the infrastructure is in place (largely financed by someone else).  At that point the VCs and the wealthy will swoop in to provide the bridge financing needed in exchange for a very high return on investment – and a sweeping claim of credit for their farsightedness and risk taking.

Despite the hype and the self-congratulation, the private sector abhors risk.  Elon Musk is the exception, not the rule.  But even there, Elon Musk has to find revenue to fund his dreams.  In the case of SpaceX, he is gobbling up the space launch market, but he is also attempting to create a communications network, Starlink, that will let him become a telecom provider and earn terrestrial revenues to support his dream for Mars.  It may work, but it is not the same thing as saying there is a blank check from venture capital to go into space.

It’s important to realize that venture capitalists are focused on spreading their bets and reducing their risks as much as possible.  When new companies are small, speculative, and risky, the venture capital and angel community invests very carefully in very small increments, tightly watched, and closely controlled.  They serve as a forcing function to push start-ups to find revenue fast.  Venture capital’s interest is to lose as little money as possible.  It rarely backs long-term visionary efforts where revenue is a distant and questionable prospect.  This is a formula optimized for Silicon Valley and the digital economy.  That is why we saw Planetary Resources managing the hype cycle with such skill and selling crowdfunding and T-shirts, selfies and school projects to get to a Minimum Viable Product that delivers actual revenue immediately.

But when a company becomes a unicorn, valued at a billion or more, with enough momentum to offer ‘proof’ of a market and a business model, the investors stampede to offer tens of millions more.  No one wants to miss the pay-off of a sure thing.

Anyone who doesn’t understand this dynamic should read a little less Ayn Rand and a lot more Mariana Mazzucato.  The private sector, despite the hype, does not (or at least rarely) invest billions on risky adventures without proven markets and a clear path to payback and exit.  Very few of these ventures succeed unless they can find significant revenue.  Even SpaceX would be a bankrupt and derelict company in Chapter 11 without a few timely contracts from NASA in 2008.

When Founder’s Fund, a group of venture capitalists, lament that their industry (venture capital) is not taking enough risk to back very long-term ventures with breakthrough potential, my only response when it comes to the space frontier is:  Of course!  When that Fund argues that the semiconductor industry was an example of Venture Capital taking on a risky long-term bet in which the long-term outcome of a mass consumer market was highly uncertain, it must be pointed out that those investments occurred against the backdrop of a Cold War spending surge in which government was a guaranteed market for innovation, purchasing semiconductors for defense purposes and offering long-term contracts.  Investments in this industry were far less risky than they are portrayed and came on the back of massive public funding and revenue.

In fact, the much-hyped asteroid mining companies are a perfect example of the limits of venture capital to fund long-term speculative ventures and a reason to question the assumptions that the private sector will lead us into space at scale.  Despite a roster of billionaires lending their names to an exciting idea,

Planetary Resources ran out of cash in 2018 and was acquired by a blockchain software company, effectively as a trophy.  But by 2020, as times turned tougher for that company, it liquidated what was left of Planetary Resources right down to its Asteroids arcade game.  Deep Space Industries met a slightly better fate.  It was acquired by Bradford Space, a small aeronautics company that purchased DSI’s technology for small propulsion systems.

The dream of mining asteroids is currently defunct, its companies bankrupt and gone.

What happened to these companies is a perfect illustration of the points made here.  Venture capital does not have an appetite to back long-term ventures where real revenue is more than a decade away and speculative even then.12

The government sector, despite years of being talked down and belittled, is critical to opening up markets on the frontier.   Government is the primary enabler of basic science and long-term bets.

The problem is that NASA’s budget remains anemic, so both the private sector and the public sector remain frustrated and have lost faith.  While there are exciting innovations occurring, the role of public sector leadership and funding at scale is missing from the equation, so we are not making any progress.

It’s as if Congress had authorized war after Pearl Harbor, but had limited procurement to 10 planes a year for the foreseeable future.  Boeing would have made the B-17 with hopes of selling more (assuming the government provided financing for the factory), but could hardly throttle up the production line and achieve cost savings without a commitment from the War Department to buy in near unlimited quantities.  Such a small quantity of B-17s would have meant each one cost an enormous sum and the critics in and outside of government would have leaped on this fact to decry how expensive and irresponsible it is to fight a war using such weapons.  On the front lines, the B-17 would have been deployed in limited numbers and would, as a result, have offered no decisive advantage.  Each and every loss would have been an expensive disaster creating further restrictions on their use, commission after commission to review what went wrong, and endless criticisms of their viability.  The war would have dragged on, ended in stalemate, or been lost to the Axis.

With the space frontier, there is no infrastructure in space and no market in place.  To build it will likely require mobilizing investment on the scale of $5-$10 trillion dollars.  Trillion.  Not billion.

The private sector will benefit enormously from the contracts and procurement effort that will be needed to advance humanity onto the space frontier at anything like scale.  Likewise, a government led effort at scale will need a vibrant and innovative private sector to drive progress, find solutions to critical problems, and deliver results that are cost competitive and continually moving down the cost curve.  It will have to be a partnership.

The World War II analogy requires a synthesis of government and the private sector working together.  It is not a perfect analogy – we are not fighting a war and we do not need to mobilize at anything like that scale and our entrepreneurs will certainly be heroes in this story.  I’ve over-rotated by intent.  The best analogy is a hybrid of World War II and the Internet in which both the public and private sector have critical, mutually reinforcing roles to play – and with room for heroism on all sides.

The private sector will create and field the most effective tools and systems possible (think SpaceX, Blue Origin, etc.) which will be procured (as goods and services) in large numbers by the public sector.  In turn, the public sector must mobilize the vast resources needed to procure at scale and effectively create a sustainable market in space.

If building out the space frontier is simply a matter of reducing launch costs and letting the private sector take charge and create a market for services, then perhaps the internet analogy will hold.  If you believe a few tens of billions in investment will get us the infrastructure in space to establish an economically self-sustaining foothold, then read no further.

But if you believe as I do that building a market in space at scale will require a massive investment from and leadership by the public sector, then that means we need a viable strategy to explain this both within the space community and to the public at large.  It means the hype about the private sector, if not completely wrong, threatens to lead us in the wrong direction.

Such a premise forces us to acknowledge a truth – that our politics and policy making have given us no vision around which to rally, no path forward that makes economic and political sense, and are, therefore, incapable of mobilizing resources at scale when it comes to space.

This is what needs to change.


This is truly an exciting time to watch America’s space program in motion.  There is a dynamic new private sector building rockets led by SpaceX, Blue Origin, and more.  We no longer have to rely on the Russians to carry our astronauts into space.   A mission to the moon is tantalizingly close.

But there is also a missing ingredient.  Government funding at scale is missing and there is no vision to rally around.  Space exploration as a governing vision has significant limitations and has not proven effective in rallying and mobilizing resources.  It offers only a small-scale future of highly expensive missions that can provide no economic payback.  At best, we are limping our way into a future that has led to failure and stagnation in the past rather than seizing the opportunity to lead with a bold new vision.

A vision is built upon multiple interlocking programs and components.  With the next chapter, I will propose an example of a program that blends public investment with private sector innovation to advance humanity into space.  We will then close this essay with a vision that attempts to set a broader strategic vision and combine it with an action plan for gaining public and political support to break-out into space at scale and achieve the enormous public benefits that are possible.


  1. Wikipedia:
  2. ___, SpaceX, Starlink Mission – SpaceS’s 100th Successful Flight, October 24, 2020,
  4. SCR00CHY, “How much does it cost to launch a reused Falcon 9? Elon Musk explains why reusability is worth it“,, September 20, 2020,
  6. Berger, Eric, “Sadly none of the big rockets we hoped to see fly in 2020 actually will,”, July 13, 2020,
  7. Strickland, John, “Revising SLS/Orion launch costs”,, July 15, 2013,
  8. _____, “NASA’s Management of Space Launch System Program Costs and Contracts”, NASA, Office of Inspector General, March 10, 2020, Report No. IG-20-012,
  10. Asterank (
  11. ____, “A flying turkey”, The Economist, August 27-September 2nd, 2022, p. 66
  12. Abrahamian, Atossa Araxia, “How the asteroid-mining bubble burst:  A short history of the space industry’s failed (for now) gold rush,” MIT Technology Review, June 26, 2019,